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Physics

Dictionary definition:

Branch of science concerned with the nature and 

properties of matter and energy

But today I want to use it as much as

a mind-set with valuable methodologies

And to show application

to many complex systems in many different arenas



Physics
as sometimes portrayed

Particle Physics                              Cosmology

‘Fundamental’ particles                How it all began 

Search for the

‘Theory of everything’



But not today

‘More is different’

Particle Physics                              Cosmology       

‘Fundamental’ particles                     How it all began

‘Theory of everything’

TOE is by no means the whole story

Many body systems often give new behaviour

through co-operation

Both ‘fundamental’ and applicable



Examples of emergent phenomena

• Superconductivity

• Magnetism

• Giant Magnetoresistence

• Quantum Hall Effect



Useful 

& often give very high accuracy

• Superconductivity

– Flux quantization

• Magnetism

• Giant Magnetoresistence

– Basis of modern high capacity data storage

• Quantum Hall Effect

– Quantized conductivity plateaux

Highest accuracy measurements of fundamental constants 

even in dirty systems



Complexity/Complex Systems

• Many body systems

• Cooperative behaviour complex

– non-trivial and new

– not simply anticipated from microscopics

– even with simple individual units 

– and simple interaction rules

• But with surprising conceptual similarities between 
superficially different systems



Typical approach

• Essentials?

– Minimal models 

– Comparisons/checks: e.g. simulation

– Analysis: maths & ansätze

• Important consequences?

• Universalities?

• Conceptualization

• Generalization

• Application

Build



Key ingredients

Frustration 

Conflicts

Disorder

Frozen 

or time-dependent; e.g. uncertainty



Emphasis 

• Novel physics

• New concepts

• Minimalist models

• Interdisciplinary transfers
• Much ubiquity, some differences

• Relevance of noise and memory

• Applicability
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Rugged Landscape Paradigm

Two-dimensional cartoon of high dimensional concept

Many metastable states

Hierarchy

Valleys within valleys

Hard to minimise: sticks: glassiness

Cost

Coordinate

to

minimise
Dynamics

c.f. motion



Control functions

Statics: Fixed      Variable
(variable)

Dynamics: Slow Fast

External influences      

.. ....( , { )}{ } { },ijij kJ SF T

General theoretical structure



Control functions, but who controls?

• Physics: nature/physical laws 

• Biology: nature but not necess. equilibrium

• Hard optimization: we choose algorithms

• Information science: we have choice

• Markets: partly supervising bodies, partly 

manufacturers, partly speculators

• Society: governments can change rules



Physics: Magnets: Spin glasses

• Disordered magnetic alloys   e.g. Au1-x Fex

– Competitive magnetic interactions

– No periodicity → no simple best compromise

• Non-periodic magnetic moment freezing

• Slow macrodynamics/ history-dependence/ aging

• Similar for site or bond disorder

Ferro Antiferro



Phase  transitions & 

preparation-dependence

Susceptibility

non-equilibrium      equilibrium

Field-cooled

Zero-field cooled

Tg

AuFe



Quenched random interaction: ±

Minimalist Model

1s=±

( )

ij i j

ij

H J s s= −∑
Magnetic elements

Frustration

& Disorder

Cost or

Hamiltonian
Spin up/down



Minimalist Model

( )

ij i j

ij

H J s s= −∑

Simulations

~ experiment

Range-free case 

soluble but very subtle



Inter-student friendship: ±

“The Dean’s Problem”

1s=±

( )

ij i j

ij

H J s s= +∑
Satisfaction

Dorm A/B
To maximise

Allocate N students to 2 residences with maximum happiness

Also 0
i

i

s =∑



Phase diagram 

No freezing

Ferromagnetic 

freezing

GFM

Temperature/noise/uncertainty/Dean’s impatience

Attractive bias

Glassy

Many metastable states

‘Rugged landscape Slow dynamics

Easy to equilibrate

Hard to equilibrate



Spin glasses

Hard Optimization

Information Science

Computer Science

Biology

Economics

Glassy Materials

Mathematical Physics Probability Theory

Examples



Examples

• Minimizing a cost

– e.g. distribution of tasks, partitioning

• Satisfiability

– Simultaneous satisfaction of ‘clauses’

• Error correcting codes

– Capacity and accuracy



Two issues

• What is achievable?

– Analogue: “statics”/equilibrium

• May be hard to find?

• Is it possible?

• If achievable, how to achieve it?

– Needs algorithms = dynamics 

• We may be able to devise

• But glassiness can badly hinder efficacy 



K-satisfiability

simultaneous satisfiability 

of many ‘clauses’ of length K

Phase transition(α): SAT / UNSAT

# of clauses

# of variables

M

N
α

   ≡ = 
   

1 2 3 3 4 5(  or  or ) and (  or  or ) and ...x x x x x x

Recent example  of hard optimization from computer science



Compare: K-satisfiability

HARD-SAT

N/M

0

UNSAT

SAT

αc
-1

α d
-1

Simple algorithms stick

Theoretically achievable limit

Physicists recognised this subtlety through comparison with K-spin glass

Phase transitions



Potts or K (>2) -spin glass

RSB1

T

0

Td

Ts

RS

Dynamical transition

Thermodynamical transition

Where the idea came from

RSB=Glassy

RSB2

Originally looked at as a purely intellectually interesting extension



Similarly: error-correcting codes

HARD TO RETRIEVE

Redundancy

0

UNRETRIEVABLE

RETRIEVABLE

Shannon limit

RETRIEVABLE

Normal 

algorithms stick

And now we know 

why



Clustering: Random K-SAT

αα* αd αc αs

SAT UNSATEASY HARD

In fact, more regimes



New algorithms

• Understanding brings opportunities

• Normal physics

– Algorithms given

• Artificial systems

– We can design algorithms

• e.g. Computational

– Simulated annealling

– Simulated tempering

– Clustering…….            Great advance: Survey propagation



Artificial ‘temperature’ Tanneal

Optimum achievable
Achieving it requires (algorithmic) dynamics

Frustration & disorder → glassiness

But we can choose the dynamics

exp( / ) anneal

configurations

Z Cost kT= −∑

Simulated annealing
effective stat. mech./thermodynamics

0
  =  ln

A

A
T

Min Cost Lim T Z
→



Landscape paradigm 

for hard optimization

Cost

obstacles

Steepest descent gets stuck



Simulated annealing

Probabilistic hill-climbing

Add ‘temperature’: freedom

Variables

Cost

TA

Annealing 

temperature

( ) ~ exp( / )AP move C T−∆



Simulated annealing

Gradually reduce TA

Variables

Cost

TA

Annealing 

temperature



Gradually reduce TA

Simulated annealing

Variables

Cost

TA

Annealing 

temperature



Simulated annealing

Variables

Cost

Hopefully

Good basic tool

but now better ones
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‘Statistical physics 

of 

the brain’



Typical neuron

Schematize

(a)

(b)

�∑



Schematic neural network

Input

Output



Mathematical modelling

j1

j2          i

j3

• Neuronal activity: Vi

• Synaptic weights: Jij       > 0 switch-on, < 0 switch-off

• Total input:
i ij jj

U J V= ∑



Consequence of input ‘potential’

Output activity of neuron/ probability of firing

• and so on through the network

Input potential

Rounding  ~  “temperature” T



Maps to analogue 

of spin glass

;    ij i j ij i jij
H J S S J

µ µ

µ
ξ ξ= − =∑ ∑

Quasi-random +/- but trained

Synaptic response



Attractors: tuned metastable states

• Associative memory

‘attractors’

~ memorized patterns

‘basins of attraction’

determined by  {Jij}

• Many memories

~ many attractors

require frustration

Phase space



Rugged landscape analogy

Valleys ~ attractors        Sculpture ~ learning

{si } {Jij}

Different timescales

fast retrieval slow learning



Phase diagram: Hopfield model

Retrieval

‘Spin glass’
(metastable attractors unrelated to memories)

Para

Synaptic ‘temperature’

Capacity: Pattern interference noise

(c.f. ferromagnet)

(No attractors)

Retrieval 

c.f. ferro



Extensions

• Artificial neural networks

– We design

• Non-biological elements

• Train by experience

• Other biological evolution

– self-train/select

• maybe without knowing what is “good”

• e.g. evolution of proteins from heteropolymeric soup

• Autocatalytic sets
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Price

Time

Different strategies

(Disorder)

Common information

(Mean field)

Learn from

Experience 

(Dynamics II)

Not all can win (Frustration)

Buy & sell

(Dynamics I)

Stockmarket



Minority game

N agents 2 choices 

Aim to be in minority

Individual strategies  → Collective consequence
• act on common information (e.g. minority choice for last m steps)

• preferences modified by experience (keep point-score)

Correlated behaviour & phase transition

Minimalist model 



Phase transition 

& ergodicity-breaking

Phase transition: α c

minimum in volatility

α < α c non-ergodic

α > α c ergodic

Random

Non-

ergodic
Ergodic

Random strategies, random histories

c.f. spin glass susc.



Coarse-grained time-average

Effective interaction between agents

Quasi-random J and h related to agent strategies

c.f. spin glass or neural network

**

Strategy point-score dynamics for agents with 2 strategies

{ sgn ( )}
( 1) ( ) /

i i
i i i s p t

p t p t H s
=

+ = − ∂ ∂

ij i j i i

ij i

H J s s h s= +∑ ∑



Minority game

a

Phase space

ij i j

ij

H J s s+= ∑

ij i j
J

µ µ

µ

ξ ξ= ∑

Many repellors

Difference from Hopfield neural network



Macrodynamics

Generating functional

Map to macroscopic variables (multi-time)

Effective ensemble of single agents with 

ensemble-self-consistent memory and coloured noise

1

'

'

( 1) ( ) sgn ( ') ( )( ) tt

t t

p t p t p t tηα α−

≤

++ = − +∑ 1 G

“Representative agent ensemble”



Simulations & iterated theory

pi(0)=0

pi(0)=1

Open = simulations    Solid = numerical iteration of analytic effective agent equations

pi(0)=0.5

Initial bias



Limit-order book

Current price (t)

buy sell

Price-line

c.f. Evaporation-deposition-annihilation

Agents place or remove orders: buy, sell, market. May be executed.
Speculators gain on price changes. Manufacturers must absorb → liquidity.

But how do they choose

what to do? 

Evolution of strategies?
Driven by individual attitudes, 

co-operative actions, learning?

More realistic extension of minority game?
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Mathematics & probability



Symbiosis of techniques

• Theoretical physics interplay

– Minimalist modelling

– Sophisticated mathematical analysis

– Computer simulation

• Both to check with more complicated real world

• And to do experiments for which no real analogue

– Conceptualization

• Real experiment +

Conclusion I



Useful interdisciplinary transfer

Not only  of

materials and experimental methods

but also of 

concepts & mathematical techniques
for

Understanding, quantification & 

application

And there are many more applications still to consider

through physics

ConclusionII



Caveats

• I have only given brief indications

– Needs much fleshing

– but I hope illustrative of possibilities

• Concentrated on macroscopic properties

– Not individuals

• And on typical/average behaviour, not fluctuations

– e.g. Not a guide for stockmarket speculation

• But one could do more

– And there is much more to do
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Theoretical methodology

• Statics/thermodynamics:
– Partition function 

• Dynamics:
– Generating functional

* Transform to macrovariables: average over disorder
Multi-replica/ multi-time correlation & response fns

* Infinite-range 
extremal dominance ~ solubility + subtlety)

{exp[ ]}Z Tr Hβ= −

( ) (microscopic eqn. of motion)Z D t δ= ∫ S

For aficionados


